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Powerful generic framework for algorithm design/nonconvex optimization

SoS Proof Algorithm

Inefficient algorithms

(polynomial system)

Efficient algorithms

(relaxation + rounding)

Yields the most powerful approximation algorithms for many statistical/ML problems

• Max-cut, tensor decomposition, dictionary learning, matrix/tensor completion, sparse PCA, 
Gaussian mixture models, planted clique, robust statistics, quantum separability, …
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Mean estimation is a well-studied problem: 

Given i.i.d. samples 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 ∈ ℝ𝑑𝑑 from an unknown distribution 𝒟𝒟, estimate 𝑢𝑢 ≔ 𝔼𝔼𝒟𝒟 𝑥𝑥

• For many scenarios, empirical mean (i.e. 1
𝑛𝑛
∑𝑖𝑖 𝑣𝑣𝑖𝑖) is enough



Robust mean estimation
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Robust mean estimation:

Let 𝒟𝒟 be a distribution over ℝ𝑑𝑑 with mean 𝑢𝑢, covariance Σ ≼ 𝐼𝐼, and bounded 4th moments. Our goal 
is to estimate 𝑢𝑢 from 𝜖𝜖-corrupted samples: 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 ∈ ℝ𝑑𝑑 , a 1 − 𝜖𝜖 -fraction sampled i.i.d. from 𝒟𝒟 and 
the remaining 𝜖𝜖-fraction are adversarially chosen. 
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Standard mean estimation setup, but where an 𝜖𝜖-fraction of data is adversarially 
corrupted  

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝑧𝑧𝑛𝑛

⋮

i.i.d. samples 
from 𝒟𝒟
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Standard mean estimation setup, but where an 𝜖𝜖-fraction of data is adversarially 
corrupted  

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝑧𝑧𝑛𝑛

⋮

i.i.d. samples 
from 𝒟𝒟

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣𝑛𝑛

⋮
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Standard mean estimation setup, but where an 𝜖𝜖-fraction of data is adversarially 
corrupted  

• Not always solvable (e.g. 𝜖𝜖 = 1)

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝑧𝑧𝑛𝑛

⋮

i.i.d. samples 
from 𝒟𝒟

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣𝑛𝑛

⋮
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Standard mean estimation setup, but where an 𝜖𝜖-fraction of data is adversarially 
corrupted  

Under what conditions is estimating the mean 𝑢𝑢 possible?



Identifiability
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Robust mean estimation: Let 𝒟𝒟 be a distribution over ℝ𝑑𝑑 with mean 𝑢𝑢, covariance Σ ≼ 𝐼𝐼, and 
bounded 4th moments. Our goal is to estimate 𝑢𝑢 from 𝜖𝜖-corrupted samples: 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 ∈ ℝ𝑑𝑑 , a 1 − 𝜖𝜖 -
fraction sampled i.i.d. from 𝒟𝒟 and the remaining 𝜖𝜖-fraction are adversarially chosen. 

Identifiability lemma.  If 𝑛𝑛 = poly 𝑑𝑑  sufficiently large, and if 𝑆𝑆 ⊂ 𝑛𝑛  of size 𝑆𝑆 = 1 − 𝜖𝜖 𝑛𝑛 

satisfies, for 𝑢𝑢𝑆𝑆 ≔
1
𝑆𝑆
∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ,

1
𝑆𝑆 �

𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 ⊤ ≼ 2𝐼𝐼,

then 𝑢𝑢𝑆𝑆 − 𝑢𝑢 ≤ 𝒪𝒪 𝜖𝜖  with high probability over the samples

• This lemma gives an algorithm for robust mean estimation



Algorithm from identifiability lemma
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Identifiability lemma.  If 𝑛𝑛 = poly 𝑑𝑑  sufficiently large, and if 𝑆𝑆 ⊂ 𝑛𝑛  of size 𝑆𝑆 = 1 − 𝜖𝜖 𝑛𝑛 satisfies, 

for 𝑢𝑢𝑆𝑆 ≔
1
𝑆𝑆
∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖,

1
𝑆𝑆
�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 ⊤ ≼ 2𝐼𝐼,

then 𝑢𝑢𝑆𝑆 − 𝑢𝑢 ≤ 𝒪𝒪 𝜖𝜖  with high probability over the samples

• The 1 − 𝜖𝜖 -fraction of uncorrupted data form such set 𝑆𝑆 

• For every possible 𝑆𝑆, check whether         holds

Issue: running time is ≥ 𝑛𝑛
1−𝜖𝜖 𝑛𝑛 = 2𝒪𝒪 𝑛𝑛 , inefficient!

(   )

(   )

Key idea:

• The proof is a low-
degree SoS proof

• It will automatically give 
an efficient algorithm



Sum-of-squares proofs
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Definition.  For multivariate polynomials 𝑝𝑝, 𝑞𝑞 ∈ ℝ[𝑥𝑥] in variables 𝑥𝑥 ∈ ℝ𝑁𝑁, we say that 𝑝𝑝 ≥ 𝑞𝑞 is a 
degree-𝑘𝑘 sum-of-squares inequality if there exists polynomials 𝑠𝑠1, 𝑠𝑠2, … ∈ ℝ 𝑥𝑥  of degree ≤ ⁄𝑘𝑘 2 such 
that 

𝑝𝑝 − 𝑞𝑞 = �
𝑖𝑖

𝑠𝑠𝑖𝑖2

We say that there is a degree-𝑘𝑘 SoS proof of 𝑝𝑝 ≥ 𝑞𝑞 modulo the axioms 𝒜𝒜 = 𝑓𝑓𝑗𝑗 = 0
𝑗𝑗∈ 𝑀𝑀

∪

𝑔𝑔ℓ ≥ 0 ℓ∈[𝑁𝑁] if there exists polynomials 𝑎𝑎1, … ,𝑎𝑎𝑀𝑀 ∈ ℝ 𝑥𝑥  and SoS polynomials 𝑆𝑆, 𝑆𝑆1, … , 𝑆𝑆𝑁𝑁 such that 
deg 𝑎𝑎𝑗𝑗𝑓𝑓𝑗𝑗 ≤ 𝑘𝑘, deg 𝑆𝑆ℓ𝑔𝑔ℓ ≤ 𝑘𝑘, deg 𝑆𝑆 ≤𝑘𝑘, and 

𝑝𝑝 − 𝑞𝑞 = 𝑆𝑆 + �
𝑗𝑗=1

𝑀𝑀

𝑎𝑎𝑗𝑗𝑓𝑓𝑗𝑗 + �
ℓ=1

𝑁𝑁

𝑆𝑆ℓ𝑔𝑔ℓ

We denote such an SoS proof as 𝒜𝒜 ⊢𝑘𝑘 𝑝𝑝 ≥ 𝑞𝑞



Expressive power of SoS proofs
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Fact.  If 𝑝𝑝, 𝑞𝑞 ∈ ℝ 𝑥𝑥  are univariate and 𝑝𝑝 ≥ 𝑞𝑞, then there is always an SoS proof of degree at most 
max deg 𝑝𝑝 , deg 𝑞𝑞

Proof sketch.

• Wlog, just consider 𝑝𝑝 ≥ 0, and induction on 𝑙𝑙 ≔ deg 𝑝𝑝

• For 𝑙𝑙 > 0, let 𝑝𝑝min be the global minimum value of 𝑝𝑝 achieved at 𝑥𝑥 = 𝑎𝑎

• Then, 𝑝𝑝 𝑥𝑥 − 𝑝𝑝min = 𝑥𝑥 − 𝑎𝑎 𝑡𝑡𝑟𝑟 𝑥𝑥  with some even number 𝑡𝑡

• Apply induction hypothesis to 𝑟𝑟 𝑥𝑥



Expressive power of SoS proofs
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Fact.  If 𝑝𝑝, 𝑞𝑞 ∈ ℝ 𝑥𝑥  are univariate and 𝑝𝑝 ≥ 𝑞𝑞, then there is always an SoS proof of degree at most 
max deg 𝑝𝑝 , deg 𝑞𝑞

This fact is not generally true for multivariate polynomials

• Hilbert ’1888: non-constructible proof

• Motzkin ’1967: explicit counterexample
𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑥𝑥4𝑦𝑦2 + 𝑥𝑥2𝑦𝑦4 − 3𝑥𝑥2𝑦𝑦2 + 1



Expressive power of SoS proofs
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Fact.  If 𝑝𝑝, 𝑞𝑞 ∈ ℝ 𝑥𝑥  are univariate and 𝑝𝑝 ≥ 𝑞𝑞, then there is always an SoS proof of degree at most 
max deg 𝑝𝑝 , deg 𝑞𝑞

• David Hilbert’s 17th problem, resolved by Artin, Krivine, Stengle

Theorem (Positivestellensatz).

Any non-negative (modulo the axioms 𝒜𝒜) polynomial can be written as a sum of squares of 
rational functions



SoS toolkit (2nd  episode)
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SoS Cauchy-Schwarz (plus):  Let 𝑎𝑎, 𝑏𝑏 be vector-valued polynomials of degree 𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑏𝑏. Then for 
any 𝜖𝜖 > 0, 

⊢𝑑𝑑𝑎𝑎+𝑑𝑑𝑏𝑏 𝑎𝑎, 𝑏𝑏 ≤
𝜖𝜖
2
𝑎𝑎 2 +

1
2𝜖𝜖

𝑏𝑏 2

and

⊢2 𝑑𝑑𝑎𝑎+𝑑𝑑𝑏𝑏 𝑎𝑎, 𝑏𝑏 2 ≤ 𝑎𝑎 2 𝑏𝑏 2



SoS toolkit (2nd  episode)
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SoS operator norm:  Let 𝑦𝑦 ∈ ℝ 𝑥𝑥 𝑛𝑛, 𝑀𝑀 ∈ ℝ 𝑥𝑥 𝑛𝑛×𝑛𝑛, and 𝐵𝐵 ∈ ℝ 𝑥𝑥 𝑛𝑛×𝑘𝑘 . Then for any 𝜖𝜖 > 0, 
𝑀𝑀 = 𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵⊤ ⊢𝑑𝑑 𝑦𝑦⊤𝑀𝑀𝑀𝑀 ≤ 𝜆𝜆 𝑦𝑦 2

for 𝑑𝑑 = deg 𝑦𝑦⊤𝑀𝑀𝑀𝑀 + 𝑦𝑦⊤𝐵𝐵𝐵𝐵⊤𝑦𝑦

Proof.

• The axioms imply that 𝑦𝑦⊤𝑀𝑀𝑀𝑀 = 𝑦𝑦⊤ 𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵⊤ 𝑦𝑦 = 𝜆𝜆 𝑦𝑦 2 − 𝐵𝐵⊤𝑦𝑦 2

• That is, 
𝜆𝜆 𝑦𝑦 2 − 𝑦𝑦⊤𝑀𝑀𝑀𝑀 = 𝑦𝑦⊤ 𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵⊤ −𝑀𝑀 𝑦𝑦 + 𝐵𝐵⊤𝑦𝑦 2

SoS
∎



Recap: Pseudoexpectation
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Definition.  For a set of polynomial axioms 𝒜𝒜 = 𝑓𝑓𝑖𝑖 = 0 ∪ 𝑔𝑔𝑗𝑗 ≥ 0 , �𝔼𝔼:ℝ 𝑥𝑥 → ℝ is a degree-𝑘𝑘 
pseudoexpectation satisfying 𝒜𝒜 if it is a linear operator with the following properties:

1.  �𝔼𝔼 1 = 1

2.  �𝔼𝔼 ℎ2 ≥ 0 ∀ ℎ ∈ ℝ 𝑥𝑥 , deg ℎ ≤ ⁄𝑘𝑘 2

3.  �𝔼𝔼 𝑎𝑎𝑓𝑓𝑖𝑖 = 0 ∀ 𝑎𝑎 ∈ ℝ 𝑥𝑥 , deg 𝑎𝑎𝑓𝑓𝑖𝑖 ≤ 𝑘𝑘, and �𝔼𝔼 𝑏𝑏2𝑔𝑔𝑗𝑗 ≥ 0 ∀ 𝑏𝑏 ∈ ℝ 𝑥𝑥 , deg 𝑏𝑏2𝑔𝑔𝑗𝑗 ≤ 𝑘𝑘

SoS proof and pseudoexpectation duality

• If 𝒜𝒜 ⊢ 𝑝𝑝 ≥ 𝑞𝑞, then �𝔼𝔼 𝑝𝑝 ≥ �𝔼𝔼 𝑞𝑞  for any �𝔼𝔼 satisfying 𝒜𝒜

• If there exist an �𝔼𝔼 such that �𝔼𝔼 𝑝𝑝 ≤ �𝔼𝔼 𝑞𝑞 , then 𝒜𝒜 ⊬ 𝑝𝑝 ≥ 𝑞𝑞



SoS proof of identifiability for robust mean estimation
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Robust mean estimation: Let 𝒟𝒟 be a distribution over ℝ𝑑𝑑 with mean 𝑢𝑢, covariance Σ ≼ 𝐼𝐼, and 
bounded 4th moments. Let 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 be i.i.d. samples from 𝒟𝒟. Our goal is to estimate 𝑢𝑢 given 𝜖𝜖-
corrupted samples 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 with the guarantee that for 1 − 𝜖𝜖 𝑛𝑛 indices 𝑖𝑖 ∈ [𝑛𝑛], 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖 . 

Polynomial formulation:

• Variables: 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 ∈ ℝ𝑛𝑛, 𝑊𝑊1, … ,𝑊𝑊𝑛𝑛 ∈ ℝ, 𝐵𝐵 ∈ ℝ𝑑𝑑×𝑑𝑑

• Polynomial system:

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤

𝑊𝑊𝑖𝑖 ∈ 0,1  is an indicator of 
clean sample

(   ) in Identifiability 
lemma

𝒜𝒜 =
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

SoS algorithm:

1. Solve a degree-6 pseudoexpectation �𝔼𝔼 satisfying 𝒜𝒜

2. Output �𝔼𝔼 𝑍𝑍

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤



Proof-to-algorithm
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

• From the duality, the lemma gives that �𝔼𝔼 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 �𝔼𝔼 𝑍𝑍 − 𝑧𝑧

2

• We have

0 ≤ �𝔼𝔼 𝑍𝑍 − 𝑧𝑧
2
− �𝔼𝔼 𝑍𝑍 − 𝑧𝑧

2 2
= �𝔼𝔼 𝑍𝑍 − 𝑧𝑧

4
− �𝔼𝔼 𝑍𝑍 − 𝑧𝑧

2 2

≤ �𝔼𝔼 𝑍𝑍 − 𝑧𝑧
2

𝒪𝒪 𝜖𝜖 − �𝔼𝔼 𝑍𝑍 − 𝑧𝑧
2

≥ 0



Proof-to-algorithm
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

• We have

𝒪𝒪 𝜖𝜖 ≥ �𝔼𝔼 𝑍𝑍 − 𝑧𝑧
2

= �𝔼𝔼 𝑍𝑍
2
− 2 �𝔼𝔼 𝑍𝑍 , 𝑧𝑧 + 𝑧𝑧 2

= �𝔼𝔼 𝑍𝑍
2
− 2 �𝔼𝔼 𝑍𝑍 , 𝑧𝑧 + 𝑧𝑧 2 + �𝔼𝔼 𝑍𝑍

2
− �𝔼𝔼 𝑍𝑍

2

= 𝑧𝑧 − �𝔼𝔼 𝑍𝑍
𝟐𝟐

+ �𝔼𝔼 𝑍𝑍
2
− �𝔼𝔼 𝑍𝑍

2

≥ 𝑧𝑧 − �𝔼𝔼 𝑍𝑍
𝟐𝟐

≥ 0 by SoS Cauchy-Schwarz
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

• 𝑧𝑧 − �𝔼𝔼 𝑍𝑍 ≤ 𝒪𝒪 𝜖𝜖

• For sufficiently large 𝑛𝑛, 𝑧𝑧 − 𝑢𝑢 ≤ 𝜖𝜖

• By triangle inequality, 𝑢𝑢 − �𝔼𝔼 𝑍𝑍 ≤ 𝒪𝒪 𝜖𝜖

• Thus, the SoS algorithm works
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• We can expand 𝑍𝑍 − 𝑧𝑧
4
 as follows:

𝑧𝑧 − 𝑍𝑍, 𝑧𝑧 − 𝑍𝑍
2

=
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍 +
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤

𝑍𝑍𝑖𝑖 = 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• We can expand 𝑍𝑍 − 𝑧𝑧
4
 as follows:

𝑧𝑧 − 𝑍𝑍, 𝑧𝑧 − 𝑍𝑍
2

=
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤

deg = 1 deg = 2
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• By SoS Cauchy-Schwarz,

𝒜𝒜 ⊢6 𝑧𝑧 − 𝑍𝑍, 𝑧𝑧 − 𝑍𝑍
2
≤

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖
2 1

𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

•    ⊢2 1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖
2 = 1 − 2𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 + 𝑊𝑊𝑖𝑖

2𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 = 1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖

•    ⊢1
1
𝑛𝑛
∑𝑖𝑖 1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖 = 1 − 1

𝑛𝑛
∑𝑖𝑖𝑊𝑊𝑖𝑖 + 1

𝑛𝑛
∑𝑖𝑖𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖≠𝑣𝑣𝑖𝑖 = 𝜖𝜖 + 1

𝑛𝑛
∑𝑖𝑖𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖≠𝑣𝑣𝑖𝑖

•    ⊢2
1
𝑛𝑛
∑𝑖𝑖𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖≠𝑣𝑣𝑖𝑖 ≤

1
𝑛𝑛
∑𝑖𝑖 𝟏𝟏𝑧𝑧𝑖𝑖≠𝑣𝑣𝑖𝑖 = 𝜖𝜖

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• 𝒜𝒜 ⊢2
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖

2 ≤ 2𝜖𝜖

• Thus,

𝒜𝒜 ⊢6
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

1 −𝑊𝑊𝑖𝑖𝟏𝟏𝑧𝑧𝑖𝑖=𝑣𝑣𝑖𝑖
2 1

𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2

≤ 2𝜖𝜖
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• Let 𝑏𝑏 ≔ 𝑧𝑧 − 𝑍𝑍. We have,

𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑏𝑏 = 𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 − 𝑏𝑏 + 𝑏𝑏, 𝑏𝑏 = 𝑧𝑧𝑖𝑖 − 𝑧𝑧,𝑏𝑏 − 𝑍𝑍𝑖𝑖 − 𝑍𝑍, 𝑏𝑏 + 𝑏𝑏 2

• By SoS triangle inequality,

⊢4 𝑧𝑧𝑖𝑖 − 𝑧𝑧, 𝑏𝑏 − 𝑍𝑍𝑖𝑖 − 𝑍𝑍, 𝑏𝑏 + 𝑏𝑏 2 2
≤

10
3

𝑧𝑧𝑖𝑖 − 𝑧𝑧, 𝑏𝑏 2 + 𝑍𝑍𝑖𝑖 − 𝑍𝑍, 𝑏𝑏
2

+ 𝑏𝑏 4

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

⊢4
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍
2
≤

1
𝑛𝑛

10
3
�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 − 𝑧𝑧,𝑏𝑏 2 + 𝑍𝑍𝑖𝑖 − 𝑍𝑍, 𝑏𝑏
2

+ 𝑏𝑏 4

=
10
3

𝑏𝑏⊤Σ𝑧𝑧𝑏𝑏 + 𝑏𝑏⊤Σ𝑍𝑍𝑏𝑏 + 𝑏𝑏 4

where Σ𝑧𝑧 ≔ 𝐂𝐂𝐂𝐂𝐂𝐂 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛  and Σ𝑍𝑍 ≔ 𝐂𝐂𝐂𝐂𝐂𝐂 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

•       ⊢4 𝑏𝑏⊤Σ𝑍𝑍𝑏𝑏 ≤ 2 𝑏𝑏 2  (SoS operator norm)

• For sufficiently large 𝑛𝑛, Σ𝑧𝑧 ≼ 2𝐼𝐼, which implies 𝑏𝑏⊤Σ𝑧𝑧𝑏𝑏 ≤ 2 𝑏𝑏 2

• Thus, 𝒜𝒜 ⊢4
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − 𝑍𝑍𝑖𝑖 , 𝑧𝑧 − 𝑍𝑍

2
≤ 10

3
4 𝑏𝑏 2 + 𝑏𝑏 4

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤
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Lemma.  Let 𝑧𝑧 ≔ 1
𝑛𝑛
∑𝑖𝑖 𝑧𝑧𝑖𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛𝑛 = poly 𝑑𝑑 , 

with high probability,

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 𝑍𝑍 − 𝑧𝑧

2

Proof.

• Putting everything together, we have

𝒜𝒜 ⊢6 𝑍𝑍 − 𝑧𝑧
4
≤ 𝒪𝒪 𝜖𝜖 4 𝑍𝑍 − 𝑧𝑧

2
+ 𝑍𝑍 − 𝑧𝑧

4

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤

∎
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Identifiability lemma.  If 𝑛𝑛 = poly 𝑑𝑑  sufficiently large, and if 𝑆𝑆 ⊂ 𝑛𝑛  of size 𝑆𝑆 = 1 − 𝜖𝜖 𝑛𝑛 satisfies, 

for 𝑢𝑢𝑆𝑆 ≔
1
𝑆𝑆
∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖,

1
𝑆𝑆
�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑆𝑆 ⊤ ≼ 2𝐼𝐼,

then 𝑢𝑢𝑆𝑆 − 𝑢𝑢 ≤ 𝒪𝒪 𝜖𝜖  with high probability over the samples

A statement about 
statistics

𝑊𝑊𝑖𝑖
2 = 𝑊𝑊𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑊𝑊𝑖𝑖 = 1 − 𝜖𝜖 𝑛𝑛

𝑊𝑊𝑖𝑖 𝑍𝑍𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑛𝑛

𝑍𝑍 ≔
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 ,
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑍𝑍𝑖𝑖 − 𝑍𝑍 𝑍𝑍𝑖𝑖 − 𝑍𝑍
⊤

= 2𝐼𝐼 − 𝐵𝐵𝐵𝐵⊤

Design a polynomial 
system

Convert to SoS 
proof

Efficient algorithm via 
pseudoexpectation (+rounding)
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Two pipelines for SoS-based algorithm design:

Non-trivial 
rounding

Trivial relaxation 
(polynomial system)

SoS proof

Efficient algorithm

(relaxation+rounding)

Non-trivial 
identification
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