CS 59300 - Algorithms for Data Science
Classical and Quantum approaches

Lecture 9(10/02)
Sum-of-Squares (II) |

https://ruizhezhang. comlcourse fall 2025 htmi

- The slides is based on Tselil Schramm’s note



https://ruizhezhang.com/course_fall_2025.html

Sum-of-Squares (So$)

Powerful generic framework for algorithm design/nonconvex optimization

S0S Proof

Inefficient algorithms Efficient algorithms

(polynomial system) (relaxation + rounding)

Yields the most powerful approximation algorithms for many statistical/ML problems

Max-cut, tensor decomposition, dictionary learning, matrix/tensor completion, sparse PCA,
Gaussian mixture models, planted clique, robust statistics, quantum separability, ...
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Robust mean estimation

Mean estimation is a well-studied problem:

Given iid. samples vy, v, ..., v, € R? from an unknown distribution D, estimate u := Ep[x]

. . . 1 .
- For many scenarios, empirical mean (i.e. ;Zi v;) is enough
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Robust mean estimation

Robust mean estimation:

Let D be a distribution over R% with mean u, covariance X < I, and bounded 4" moments. Our goal
is to estimate u from e-corrupted samples: vy, ..., v, € R%, a (1 — €)-fraction sampled i.i.d. from D and
the remaining e-fraction are adversarially chosen.
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Robust mean estimation

Standard mean estimation setup, but where an e-fraction of data is adversarially
corrupted

I.I.d. samples
from D
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Robust mean estimation

Standard mean estimation setup, but where an e-fraction of data is adversarially
corrupted

I.I.d. samples
from D
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Robust mean estimation

Standard mean estimation setup, but where an e-fraction of data is adversarially
corrupted

- Not always solvable (e.g.€ = 1)

I.I.d. samples 3
from D
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Robust mean estimation

Standard mean estimation setup, but where an e-fraction of data is adversarially
corrupted

Under what conditions is estimating the mean u possible?
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|dentifiability

Robust mean estimation: Let D be a distribution over R with mean u, covariance X < I, and
bounded 4th moments. Our goal is to estimate u from e-corrupted samples: v, ..., v, € R%, a (1 — €)-
fraction sampled i.i.d. from D and the remaining e-fraction are adversarially chosen.

Identifiability lemma. If n = poly(d) sufficiently large, and if S c [n] of size |S| = (1 — €)n
satisfies, for ug :== l?llzies Vi,

1

57 D, us) (v —ug) T < 21

LES

then ||ug — u|| < 0(v/e) with high probability over the samples

This lemma gives an algorithm for robust mean estimation
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Algorithm from identifiability lemma

Identifiability lemma. If n = poly(d) sufficiently large, and if S c [n] of size |S| = (1 — €)n satisfies,
for ug := ﬁzies 14T

1
EZ(UL- — us)(vl- - uS)T < 21, (*)

IES

then |lug — u|| < 0(V/e) with high probability over the samples

The proof is a low-
The (1 — €)-fraction of uncorrupted data form such set S degree SoS proof

For every possible S, check whether (%) holds It will automatically give

. e an efficient algorithm
Issue: running time is > ((1_"6)n) = 20" jnefficient!

October 5, 2025 9



Sum-of-squares proofs

Definition. For multivariate polynomials p, g € R[x] in variables x € R, we say thatp > g is a
degree-k sum-of-squares inequality if there exists polynomials sy, s5, ... € R[x] of degree < k/2 such

that
p—q ZZS"Z

i
We say that there is a degree-k SoS proof of p = g modulo the axioms A = {fj = O}jE[M] U

{ge = O0}peqn if there exists polynomials ay, ..., ay € R[x] and SoS polynomials S, Sy, ..., Sy such that
deg(ajfj) < k, deg(S,g9,) < k, deg(S) <k, and

N
p—q=S+Zajfj+ZSggg

j=1 £=1

We denote such an SoS proofas A F, p = g
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Expressive power of SoS proofs

Fact. If p,gq € R[x] are univariate and p > g, then there is always an SoS proof of degree at most
max{deg(p), deg(q)}

Proof sketch.
Wilog, just consider p = 0, and induction on [ := deg(p)
For [ > 0, let pyin be the global minimum value of p achieved at x = a
Then, p(x) — Pmin = (x — a)tr(x) with some even number t

Apply induction hypothesis to r(x)
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Expressive power of SoS proofs

Fact. If p,gq € R[x] are univariate and p > g, then there is always an SoS proof of degree at most
max{deg(p), deg(q)}

This fact is not generally true for multivariate polynomials
Hilbert "1888: non-constructible proof

Motzkin "1967: explicit counterexample
p(x,y) = x*y? + x%y* —3x%y? +1
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Expressive power of SoS proofs

Fact. If p,gq € R[x] are univariate and p > g, then there is always an SoS proof of degree at most
max{deg(p), deg(q)}

David Hilbert's 17t problem, resolved by Artin, Krivine, Stengle
Theorem (Positivestellensatz).

Any non-negative (modulo the axioms A) polynomial can be written as a sum of squares of
rational functions
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SoS toolkit (2 episode)

SoS Cauchy-Schwarz (plus): Let a, b be vector-valued polynomials of degree d, and d;. Then for
any e > 0,

€z L 2
Fag+a, (@, b) < > lall* + o |||
and

F2(dgtdy) (@ D) < llall?|Ibll?
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SoS toolkit (2 episode)

SoS operator norm: Let y € R[x]", M € R[x]™", and B € R[x]™*¥, Then for any € > 0,
{M=2—-BB"}qy "My < Allyll*

ford = deg(y "My + y"BBTy)

Proof.
The axioms imply that yTMy = yT(AI — BB")y = Allyl|? = [|IB"y||?

That is,

Alyll* =y ™y =yT (Al = BBT — M)y + ||Byl|?
\ J

Y
SoS
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Recap: Pseudoexpectation

Definition. For a set of polynomial axioms A = {f; = 0} U {g; = 0}, E: R[x] - R is a degree-k
pseudoexpectation satisfying A if it is a linear operator with the following properties:

1. E[1] =1
2. E

h?] >0V h € R[x], deg(h) < k/2

3. Elaf;] =0V ace€ R[x], deg(af;) < k,and E[b%g;| = 0V b € R[x], deg(b?g;) <k
SoS proof and pseudoexpectation duality

If A +p > q, then E[p] > E[q] for any E satisfying A
If there exist an E such that E[p] < E[q], then A 1+ p = ¢
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S0S proof of identifiability for robust mean estimation

Robust mean estimation: Let D be a distribution over R¢ with mean u, covariance X < I, and
bounded 4" moments. Let zy, ..., z,, be i.i.d. samples from D. Our goal is to estimate u given e-
corrupted samples v, ..., v, with the guarantee that for (1 — ¢)n indices i € [n], v; = z;.

Polynomial formulation:

Variables: Z,, ...,Z, € R", W,,...,W,, € R, B € R4*d

Polynomial system:

W2 =W, Vi€ |[n]
~ | W; €{0,1} is an indicator of

Z Wi={d-en clean sample

A =

W(Z v;)) =0 Vi€ ]|n]

=->z, %Z(zi _7)z-7) =20—psT (R inidentifiability
=1

- lemma
i=1

®» ©E

:Ir—\
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

@ ZWi =1 -en O, 7==%ZZL-, %Z(Zi—f)(Zi—f)sz—BBT

i=1

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’

SoS algorithm:

1. Solve a degree-6 pseudoexpectation E satisfying A

2. Output E[Z]
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Proof-to-algorithm

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are||Z -2 <0z -7’

From the duality, the lemma gives that E [||f — E||4] < 0(e)E [”? - 5”2]

We have

o
IA
B

(221" ~E[iz-2I])'| = E[Iz - 21"] - E iz - 21"
122"} (0@ - B[z - 2I])

=0

IA
R
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Proof-to-algorithm

Lemma. Letz := %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are||Z -2 <0z -7’

We have
o(e) > E[|Z - 7’| = E[|Z]"] - 2(E[Z].2) + Iz
- E[|ZI]" - 2(E[Z),2) + 1z + (& [|Z]I°] - E[IZII]°)
= lz- &2 + (B [I21'] - EiZI°)

_ 2
> ||z - E|Z]]| > 0 by SoS Cauchy-Schwarz
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Proof-to-algorithm

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,
— _unu4 — _n2
Are ||Z-2Z| <0z -7

Iz - E[z]|| < otve)

For sufficiently large n, ||z — u|| < /e
u—E[Z]|| < 0(Ve)
Thus, the SoS algorithm works

By triangle inequality, |
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

n

@lei:(l_e)" @E’:%Zz"’ %Zl(zi-f)(zi—f)TﬂI—BBT

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’
Proof.

We can expand ||Z — Z||" as follows:

n n 2
= _ =2 1 _ = 1 —
(z—-2,7-27Z) = (EZ(l—Wilzi:vi)(zi—Zi,z—Z)+Ez Wi1ziy4i,z—z)>

i=1 =1
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

n

@lei:(l_e)" @E’:%Zz"’ %Zl(zi-f)(zi—f)TﬂI—BBT

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’
Proof.

We can expand ||Z — Z||" as follows:
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S0S proof of identifiability for robust mean estimation

() Wf=w; vie|[n] @W(z v;,) =0 VlE[]
@ Yw=0-en @Z==Y2, - (2-2)(2-2Z) =21—-BBT
2 D

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’
Proof.
By SoS Cauchy-Schwarz,

Are(Z-27-2Z) < 1271:(1 w1 (15 ~7,7—7) )
6\Z2—2,z2—Z) =|— — Wil =y = Z—Z
ni=1 n

October 5, 2025 24



S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

@ ZWi =1 -en O, 7==%ZZL-, %Z(Zi—f)(Zi—f)sz—BBT

i=1

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,
— 4 — 2
Ak ||Z-2Z| <0z -7Z|
Proof.
2 2
(D (1=-Wil, o) =1=2Wid, o + Wi, oy = 1 - Wi,

1 1 1 1
¢ @ I_l ;21(1 - WilziZUi) =1- ;Zl Wi + ;Zl Wilziivi = €+ ;Zl Wilziivi

1 1
’ @ I_Z ;Zl Wilziivi = _Zi 1zi¢vi =€

n
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S0S proof of identifiability for robust mean estimation

() Wf=w; vie|[n] @W(z v;,) =0 VlE[]
@ Yw=0-en @Z==Y2, - (2-2)(2-2Z) =21—-BBT
2 D

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’
Proof.

1 2
Aty =X (1= Wilyny,)” < 26

1 n
Fe £Z(1—Wilzi v,
i=1 i=1
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

@ ZWi =1 -en O, 7==%ZZL-, %Z(Zi—f)(Zi—f)sz—BBT

i=1
Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,
Are||Z-2| <o@|z-2|

Proof.

Let b :== Z — Z. We have,

(zi — Zy, b)Y ={z; — Z; — b+ b,b) = (z; — 2,b) — (Z; — Z,b) + ||b||?
By SoS triangle inequality,
o ((z; —Z,b) — (2, = Z,b) + IB]1?)” < ? ((zi —Z b)Y + (2, —Zb) + ||b||4)
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

n

1 — —
@ ;Wi:(l_f)n @ Z-—Egzi, EZ(ZL'—Z)(ZL-—Z)TIZI—BBT

i=1
Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,
— 4 — 2
Ak ||Z-2Z| <0z -7Z|
Proof.
1% 110 %
— 2 — 2
z ~7;,Z—7Z) £—— ((zi —7Z, b2 +(Z; = Z,b) + ||b||4)

n 3 ¢
i=1 =1

10
= ?(bTZzb +b"Z,b + ||b]|*)

where X, := Cov(zy, ..., z,) and Z, := Cov(Z4, ..., Z,)
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

n

@lei:(l_e)" @E’:%Zz"’ %Zl(zi-f)(zi—f)TﬂI—BBT

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Ave||Z-2| < 00|z -2
Proof.
+ (4) k4 bTT;b < 2||b||* (SoS operator norm)

For sufficiently large n, ¥, < 2I, which implies bT%,b < 2||b||?

1 —  =\2 _10
Thus, A F, = "z —2,7z-7Z) < — (4lIbl1I% + 1151I1*)
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S0S proof of identifiability for robust mean estimation

(D) wWf=w; vien] () Wi(Z-v)=0 Vieln]

n

@ Jwi=t-on  @T=p . Y -DE-D 2o

Lemma. Letz:= %Zizi be the empirical mean of the uncorrupted samples. So long as n = poly(d),
with high probability,

Are|Z-7Z| <0z -7’
Proof.

Putting everything together, we have

Ave |Z-7" <o) (42 -2 +1Z -2|")
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SoS for robust statistical problem

Identifiability lemma. If n = poly(d) sufficiently large, and if S c [n] of size |S| = (1 — €)n satisfies,

1
for ug :== Ezies Vi,

1
EZ(W —ug)(v; —ug)' < 21, A statement about
€5 statistics

then |lug — u|| < 0(V/e) with high probability over the samples

(D) Wf=w; vieln] () Wi(Z-v)=0 Vi€][n]

n

@ZWiz(l_E)" @7:%212"’ %Z(zi—f)(zi—?)T=21—BBT

Design a polynomial Efficient algorithm via Convert to SoS
system pseudoexpectation (+rounding) proof
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Sum-of-Squares (So$)

Two pipelines for SoS-based algorithm design:

Non-trivial
Identification

SoS proof

Efficient algorithm

(relaxation+rounding)

Trivial relaxation Non-trivial
(polynomial system) rounding
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